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Abstract
The quantum mechanical hypervirial theorems (HVT) technique is used to
treat the so-called ‘uncertainty’ relation for quite a general class of central
potential wells, including the (reduced) Poeschl–Teller and the Gaussian one.
It is shown that this technique is quite suitable in deriving an approximate
analytic expression in the form of a truncated power series expansion for
the dimensionless product Pnl ≡ 〈r2〉nl〈p2〉nl/h̄

2, for every (deeply) bound
state of a particle moving non-relativistically in the well, provided that a
(dimensionless) parameter s is sufficiently small. Attention is also paid to
a number of cases, among the limited existing ones, in which exact analytic or
semi-analytic expressions for Pnl can be derived. Finally, numerical results are
given and discussed.

PACS numbers: 02.60.−x, 03.65.−w, 21.80.+a

1. Introduction

The quantum mechanical hypervirial theorems (HVT) technique [1, 2] is a very useful
technique in dealing with various problems encountered in physics and chemistry. Its main
advantage is that one can calculate expectation values of interesting quantities, avoiding the
use of the wavefunction and thus achieving considerable simplification. Particular attention
was paid in obtaining energy eigenvalues for a particle moving in a potential and a lot of work
has been done in this direction for various types of potentials [3].

The case of a general class of even-power series central potentials and in particular
those of the form V (r) = −V0f

(
r
R

)
was studied in [4, 5]. In that procedure, one obtains

in a unified way the general expressions of the (lower) bound state energy eigenvalues and
of the expectation values of certain other physical quantities with respect to the eigenstates
of the single particle Hamiltonian. Application of these expressions to specific potentials
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of the class leads immediately to the corresponding expressions for the particular potential
considered. These expressions are of the form of expansions in powers of a small parameter
and the first terms of the expansions are expected to provide a reasonable approximation of
the calculated quantities, as long as the parameter is sufficiently small. For potentials of the
form V (r) = −V0f

(
r
R

)
, the expressions are power-series of the dimensionless parameter

s = (
h̄2

2µV0R2

)1/2
and the structure of the first terms of the expansions is fairly simple. The

successive terms of each expansion are obtained by means of suitable recurrence relations
on the basis of Swenson and Danforth hypervirial relations [6] and the Hellmann–Feynman
theorem [7]. See also Killingbeck [2].

In a recent paper [8] another useful application of the HVT technique was considered,
namely the study of inequalities of physical interest. Two basic inequalities were studied,
relating the lowest energy level spacing �E of a particle in its ground state, moving non-
relativistically in a central well, to the mean-square radius of its orbit and the expectation
value of its kinetic energy, respectively, with the aim of investigating their (approximate)
‘saturation’, that is whether they become equalities approximately (e.g. within a few
per cent) [9].

The aim of this paper is to discuss another inequality which is important to physics. It has
been pointed out (see [10] and section 2 of [11]) that for a particle moving non-relativistically
in a central potential V (r), the following ‘uncertainty’ relation holds:

〈r2〉〈p2〉/h̄2 � 9
4 . (1)

It was pointed out that the inequality becomes equality for the ground state of the
harmonic oscillator (HO) potential. In all other cases the above relation is an inequality
and it would be of interest to provide analytic ways of calculating the dimensionless product
Pnl ≡ 〈r2〉〈p2〉/h̄2 � 9

4 , where the expectation values are calculated with respect to the
Hamiltonian single-particle eigenstates. This would provide the means to investigate to what
extent the inequality is saturated, depending on the potential shape considered and on the
specific state. We may recall that the usual uncertainty relation for the position and its
conjugate momentum: �x̂�p̂ � h̄/2 and its generalizations have been the subject of detailed
investigations since the publication of Heisenberg’s original paper [12] until recently (see, e.g.,
[13] and references therein). We refer for detail in this respect to the very informative review
article [14]. Among the topics of interest have been the analytic calculations of the uncertainty
product (�x̂)(�p̂) for various types of one-dimensional potentials (see, e.g., [14]).

Before proceeding to the main topic of this paper (in the third section), attention is paid (in
the following section and in the appendix) to certain typical cases in which the product Pnl can
be given exactly analytically or semi-analytically. The final section is devoted to numerical
results and to discussion.

2. Exact analytic results for the dimensionless product Pnl for a number
of potentials

Among the various central potentials, only a few have the property to lead to an exact analytic
expression for the dimensionless product Pnl ≡ 〈r2〉nl〈p2〉nl/h̄

2 for any bound eigenstate
|nl〉 of the Hamiltonian. It should be clear that not only should the energy eigenvalues be
given analytically, but also the integrations in 〈r2〉nl should be performed analytically and the
result be given by a closed-form analytic expression. Typical examples of central potentials
having these desired properties are the isotropic harmonic oscillator, the Coulomb (C) potential
and the spherically symmetric rectangular well with infinite walls (IW). In this section the
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corresponding expressions for the dimensionless products Pnl are given and discussed. These
expressions are also useful for comparisons.

(a) For the HO potential. V HO(r) = 1
2µω2r2, the energy eigenvalues Enl = 〈T̂ 〉nl + 〈V̂ 〉nl ,

where by T̂ and V̂ we denote the kinetic and potential energy operators, respectively, are given
by the well-known expression [15]

EHO
nl = (

2n + l + 3
2

)
h̄ω = (

N + 3
2

)
h̄ω with n, l = 0, 1, 2, 3, . . . (2)

where N = 2n + l is the HO quantum number. In addition, application of the virial theorem,
to the case of the HO potential leads to the following relations:

〈T̂ 〉HO
nl = 〈V̂ 〉HO

nl = EHO
nl

2
. (3)

Multiplying 〈T̂ 〉HO
nl and 〈V̂ 〉HO

nl , the following very simple expression for P HO
nl results:

P HO
nl = 〈r2〉HO

nl 〈p2〉HO
nl

/
h̄2 = (

2n + l + 3
2

)2
. (4)

It is apparent from (4) that the dimensionless product P HO
nl increases as the quantum

numbers (nl) of the state increase, that is as the state becomes more excited. Furthermore,
states with fixed N have the same dimensionless product. In addition, P HO

nl is in accordance
with (in)equality 〈r2〉nl〈p2〉nl � 9

4 and attains its minimum value 9/4 for n = 0, l = 0, that is
for the HO ground state.

(b) For the Coulomb potential (in the case of a hydrogen-like atom). V C(r) = −Ze2

r
, the

well-known expression of the energy eigenvalues is

EC
n = −h̄2

(
a2

Zµ
)

2n2
where aZ = h̄2

µ e2

1

Z
= a

Z
(5)

and a is the atomic unit of length (the first Bohr radius: a = h̄2

µ e2 = 0.5292 Å). Application of
the virial theorem in this case leads to the relation [15]

〈T̂ 〉Cn = − 1
2 〈V̂ 〉Cn = −EC

n . (6)

Therefore 〈p2〉Cnl = 〈p2〉Cn = h̄2

a2
Zn2 .

Furthermore, application of Kramer’s relation (see, e.g., [15]) with s = 2 leads to

〈r2〉Cnl = n2a2
Z

2
[5n2 + 1 − 3l(l + 1)]. (7)

Thus, the analytic expression for the dimensionless product in this case is

P C
nl = 1

2 [5n2 + 1 − 3l(l + 1)]. (8)

It should be recalled that here n is the principal quantum number: n = 1, 2, 3, . . . and
l = 0, 1, 2, . . . (n − 1).

It is seen that P C
nl attains its minimum value of 3 for the ground state (n = 1, l = 0).

This minimum value is larger than the corresponding one of P HO
nl that is 9/4, which ‘saturates

the inequality’. It is also seen that for fixed n, the minimum value of P C
nl corresponds to the

maximum possible value of l: l = n − 1.

(c) Finally, for the spherically symmetric rectangular infinite potential well

V IW(r) =
{

0 if r � R

∞ if r > R
(9)
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the energy eigenvalues reckoned from the ‘bottom’ of the well are given by [16]

EIW
nl = h̄2X2

nl

2µR2
(10)

where Xnl are the roots of the lth-order spherical Bessel function and n = 1, 2, 3, . . . is the
principal quantum number, that is the number of the root in order of increasing magnitude.

From the above expression of 〈T̂ 〉nl , the expression of 〈p2〉nl follows immediately. On
the other hand, the 〈r2〉nl can be obtained analytically as well, in terms of Xnl [17]. The result
is

〈r2〉IW
nl = R2

3

[
1 +

(2l + 3)(2l − 1)

2X2
nl

]
. (11)

Therefore, the expression for P IW
nl is

P IW
nl = 1

3

[
X2

nl + 1
2 (2l + 3)(2l − 1)

]
. (12)

It is seen that for the ground state (n = 1, l = 0), the dimensionless product attains its
minimum value and becomes P IW

10 = [
π2

3 − 1
2

] � 2.79. This value is in accordance with
inequality (1). It is, however, larger than the corresponding HO minimum value P HO

00 = 2.25,
but smaller than the corresponding dimensionless product for the Coulomb potential P C

10 = 3.
We also see that the expression of P IW

nl becomes very simple for any s state (l = 0). Thus,

P IW
n0 =

[
n2π2

3
− 1

2

]
. (13)

Finally, it is worth mentioning that there are potentials for which the dimensionless product
can be given ‘semi-analytically’, for certain states, when for example, an integral involved has
to be calculated numerically. This is the case of the s states of the (reduced) Poeschl–Teller
(PT) potential. The corresponding semi-analytic expressions for P PT

n0 which may be derived
are given in the appendix and the values obtained with them are useful in comparing them
with the HVT values (see section 4).

3. The formalism and the expression for the dimensionless product Pnl

In this section the s-series expansions, mentioned in the introduction, are used, which were
derived by means of the HVT technique [4, 5].

The class of two-parameter potential wells of the general form

V (r) = −V0f (r/R) 0 � r < ∞ (14)

is considered and a particle of mass µ is assumed to move (non-relativistically) in a well of
this form. In the above expression, V0 > 0 is the potential depth, R > 0 its ‘radius’ and f

(f (0) = 1) the ‘potential form factor’ which determines its shape. The function f is assumed
to be an appropriate analytic function of even powers of x = r/R with d2f/dx2|x=0 > 0.
Such potentials behave like a harmonic oscillator potential near the origin and therefore the
terminology ‘oscillator-like’ potentials has been used. The results of this paper corroborate
the suitability in using such terminology (see section 4). Apart from the above mentioned
resemblance, their shape is quite different from that of the harmonic oscillator.

Typical potentials of the class are

(a) The Gaussian potential

VG(r) = −V0 e−r2/R2
.
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(b) The (reduced) PT potential

VPT(r) = −V0 cosh−2(r/R)

but there are many others belonging to the same class.
In order to obtain the dimensionless product Pnl it is convenient to use for the energy

eigenvalues and the expectation values of the kinetic energies and the mean square radii of the
particle orbits the dimensionless expressions of their s-expansions of [5] which are denoted
by a tilde on the top of the corresponding symbol. In the pertinent formulae, displayed below,
it was found appropriate to rearrange somehow the terms in the coefficient of powers greater
than 2, so that there is a more convenient way of factorizing the two sorts of contributions, that
is those originating from the quantum numbers n, l of the state and those from the numbers dk ,
determined by the potential shape, which are related to the derivatives of the potential form
factor f

dk = 1

(2k)!

d2k

dx2k
f (x)|x=0 k = 0, 1, 2, . . . , d1 < 0. (15)

The above rearrangements of terms in the coefficients of the s powers will facilitate their
use in the following.

We also note that it would be desirable to consider in addition a renormalized hypervirial
perturbation theory [2, 18] which is a very efficient one and has been used in treating various
problems [19, 20]. This matter is under investigation and requires further work in order that
the method is adjusted to our purposes. Among the recent work in connection with the HVT
perturbation theory, we mention in particular the paper by Killingbeck et al (2001). In that
paper, the advantages which stem from an appropriate choice of the unperturbed potential and
of the origin at which the energy expansion is carried out, are discussed.

The expression of the expansion for the energy eigenvalues is as follows:

Ẽnl = Enl

V0
=

∞∑
k=0

eks
k (16)

where

e0 = −1 (17)

e1 = 2anl(−d1)
1/2 anl =

(
2n + l +

3

2

)
(18)

e2 = d2

8d1

(
12a2

nl − 4l(l + 1) + 3
)

(19)

e3 = −anl(−d1)
1/2

32d3
1

{
4d1d3

[
20a2

nl − 12l(l + 1) + 25
]

+ d2
2

[−68a2
nl + 36l(l + 1) − 67

]}
(20)

e4 = 1

1024d4
1

{
12d1d2d3

[
880a4

nl − 8a2
nl[84l(l + 1) − 295] + 3[4l(l + 1) − 3][4l(l + 1) − 35]

]
+ d3

2

[−6000a4
nl + 24a2

nl[172l(l + 1) − 569]

− [4l(l + 1) − 3][44l(l + 1) − 513]
]

+ 8d2
1d4

[−560a4
nl + 40a2

nl[12l(l + 1) − 49]

− 3[4l(l + 1) − 3][4l(l + 1) − 35]
]}

. (21)
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For the mean-square radii of the particle orbits we have

〈r̃2〉nl ≡ 〈r2〉nl

R2
=

∞∑
k=0

rks
k (22)

where

r0 = 0 (23)

r1 = anl

(−d1)1/2
(24)

r2 = d2

8d2
1

(
12a2

nl − 4l(l + 1) + 3
)

(25)

r3 = −anl(−d1)
1/2

64d4
1

{
12d1d3

(
20a2

nl − 12l(l + 1) + 25
)

+ 5d2
2

[−68a2
nl + 36l(l + 1) − 67

]}
(26)

r4 = − 1

256d5
1

{
9d1d2d3

[−880a4
nl + 8a2

nl[84l(l + 1)−295] − 3[4l(l + 1) − 3][4l(l + 1) − 35]
]

+ d3
2

[
6000a4

nl − 24a2
nl[172l(l + 1) − 569] + [4l(l + 1) − 3][44l(l + 1) − 513]

]
+ 4d2

1d4
[
560a4

nl − 40a2
nl[12l(l + 1) − 49] + 3[4l(l + 1) − 3][4l(l + 1) − 35]

]}
.

(27)

Finally, for the expectation value of the kinetic energy operator in the various energy
eigenstates we have

〈T̃ 〉nl ≡ Tnl

V0
=

∞∑
k=0

tks
k (28)

where

tk = k

2
ek k = 0, 1, 2 . . . . (29)

For the product 〈r2〉nl〈p2〉nl we may write

〈r2〉nl〈p2〉nl = 2µV0R
2〈r̃2〉nl〈T̃ 〉nl

= h̄2

s2
〈r̃2〉nl〈T̃ 〉nl

= h̄2

s2

( ∞∑
k=0

rks
k

) ( ∞∑
k=0

tks
k

)

= h̄2

s2

( ∞∑
k=0

γks
k

)
(30)

where

γk =
k∑

ρ=0

rρtk−ρ. (31)

The expressions of γk, k = 0, 1, 2 . . . follow easily from the expressions of rk and tk . We
find
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γ0 = γ1 = 0 γ2 = r1t1 = a2
nl γ3 = r1t2 + r2t1 = 0

γ4 = r1t3 + r2t2 + r3t1 = 1

64d3
1

{
d1d3

[
12anl(anl − 1)

(
20a2

nl + 25 − 12l(l + 1)
)]

+ d2
2

[(
12a2

nl − 4l(l + 1) + 3
)2

+ anl(5anl − 3)
(−68a2

nl + 36l(l + 1) − 67
)]}

(32)

and

γ5 = r1t4 + r2t3 + r3t2 + r4t1 = − (−d1)
1/2

83d5
1

{
6d1d2d3

[
q

(1)
nl + q

(2)
nl + q

(3)
nl

]
+ d3

2

[
q

(4)
nl + q

(5)
nl

]}
(33)

where

q
(1)
nl = −8a3

nl

[
110a2

nl − 84l(l + 1) + 295
]

q
(2)
nl = −3anl[4l(l + 1) − 3][4l(l + 1) − 35]

q
(3)
nl = 2(1 + anl)

[
12a2

nl − 4l(l + 1) + 3
][

20a2
nl − 12l(l + 1) + 25

]
(34)

q
(4)
nl = 24a3

nl

[
250a2

nl − 172l(l + 1) + 569
]

q
(5)
nl = anl[4l(l + 1) − 3][44l(l + 1) − 513]

+ (3 + 5anl)
[
12a2

nl − 4l(l + 1) + 3
][−68a2

nl + 36l(l + 1) − 67
]
.

Therefore, the result for the dimensionless product Pnl is

Pnl ≡ 〈r2〉nl〈p2〉nl

h̄2

= (
2n + l + 3

2

)2
+ γ4s

2 + γ5s
3 + ϑ(s4)

≡ P
(0)
nl + P

(2)
nl + P

(3)
nl + ϑ(s4). (35)

It is seen that the structure of the dimensionless product is fairly simple, but the coefficients
γk become progressively more complicated as the power of s increases. It is further seen that
there is no contribution of terms proportional to the small dimensionless quantity s but of
terms of s2 and higher.

4. Numerical values of the dimensionless product Pnl and discussion

In this section we report the numerical results obtained with the derived expression (35) of
the dimensionless product Pnl for the first bound states and the various values of the small
quantity s. Each contribution to Pnl : P

(0)
nl , P

(2)
nl and P

(3)
nl is also given in each case. The detailed

results obtained with the PT potential are given in tables 1–4, while those with the Gaussian
potential are displayed in tables 5–8, respectively.

It is clear from the results obtained in all tables that the main contribution to Pnl , for
each bound state, comes from the corresponding zeroth-order term P

(0)
nl (see expression (35)).

This is more pronounced for the ground state (n = 0, l = 0) and the smaller values of s, as is
expected. It is also noted that the (absolute) values of P

(3)
nl are smaller than the corresponding

ones of P
(2)
nl and often the difference between the two values is quite substantial.

On the basis of the above observations, it is therefore seen that the values of the
dimensionless product Pnl are quite close to the corresponding values of the harmonic oscillator
potential P

(HO)
nl = P

(0)
nl . This fact corroborates the suitability of the terminology of the

potentials of this class as ‘oscillator-like’ potentials. Pertaining to other types of potentials,
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Table 1. Numerical values of the dimensionless product Pnl and the partial contributions P
(s)
nl to

it for the states nl = 00 for the various values of s. The reduced PT potential was used.

s P
(0)
00 P

(2)
00 P

(3)
00 P00

0.00 2.250 0 0 2.2500
0.02 2.250 0.000 14 0.000 01 2.2501
0.04 2.250 0.000 55 0.000 04 2.2506
0.06 2.250 0.001 24 0.000 14 2.2514
0.08 2.250 0.002 20 0.000 33 2.2525
0.10 2.250 0.003 44 0.000 64 2.2541
0.12 2.250 0.004 95 0.001 10 2.2561

Table 2. Numerical values of the dimensionless product Pnl and the partial contributions P
(s)
nl to

it for the states nl = 10 for the various values of s. The reduced PT potential was used.

s P
(0)
10 P

(2)
10 P

(3)
10 P10

0.00 12.250 0 0 12.2500
0.02 12.250 −0.002 56 −0.000 21 12.2472
0.04 12.250 −0.010 25 −0.001 67 12.2381
0.06 12.250 −0.023 06 −0.005 65 12.2213
0.08 12.250 −0.041 00 −0.013 39 12.1956
0.10 12.250 −0.064 62 −0.026 16 12.1598
0.12 12.250 −0.092 25 −0.045 20 12.1126

Table 3. Numerical values of the dimensionless product Pnl and the partial contributions P
(s)
nl to

it for the states nl = 01 for the various values of s. The reduced PT potential was used.

s P
(0)
01 P

(2)
01 P

(3)
01 P01

0.00 6.250 0 0 6.2500
0.02 6.250 0.000 71 0.000 05 6.2508
0.04 6.250 0.002 84 0.000 37 6.2532
0.06 6.250 0.006 39 0.001 26 6.2577
0.08 6.250 0.011 36 0.002 99 6.2644
0.10 6.250 0.017 74 0.005 84 6.2736
0.12 6.250 0.025 55 0.010 09 6.2856

Table 4. Numerical values of the dimensionless product Pnl and the partial contributions P
(s)
nl to

it for the states nl = 02 for the various values of s. The reduced PT potential was used.

s P
(0)
02 P

(2)
02 P

(3)
02 P02

0.00 12.250 0 0 12.2500
0.02 12.250 0.003 24 0.000 26 12.2535
0.04 12.250 0.012 95 0.002 06 12.2650
0.06 12.250 0.029 14 0.006 97 12.2861
0.08 12.250 0.051 80 0.016 51 12.3183
0.10 12.250 0.080 94 0.032 24 12.3632
0.12 12.250 0.116 55 0.055 72 12.4223

such as the Coulomb and the infinite spherical well discussed in section 2, the values of Pnl ,
are quite different, as is clear, at least for the ground state, from the values quoted there.
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Table 5. Numerical values of the dimensionless product Pnl and the partial contributions P
(s)
nl to

it for the states nl = 00 for various values of s. The Gaussian potential was used.

s P
(0)
00 P

(2)
00 P

(3)
00 P00

0.00 2.250 0 0 2.2500
0.02 2.250 0.000 26 0.000 01 2.2503
0.04 2.250 0.001 03 0.000 10 2.2511
0.06 2.250 0.002 32 0.000 33 2.2527
0.08 2.250 0.004 13 0.000 77 2.2549
0.10 2.250 0.006 45 0.001 51 2.2580
0.12 2.250 0.009 28 0.002 61 2.2619

Table 6. Numerical values of the dimensionless product Pnl and the partial contributions P
(s)
nl to

it for the states nl = 10 for various values of s. The Gaussian potential was used.

s P
(0)
10 P

(2)
10 P

(3)
10 P10

0.00 12.250 0 0 12.2500
0.02 12.250 0.006 68 0.000 34 12.2570
0.04 12.250 0.026 72 0.002 73 12.2794
0.06 12.250 0.060 12 0.009 22 12.3193
0.08 12.250 0.106 88 0.021 85 12.3787
0.10 12.250 0.166 99 0.042 67 12.4597
0.12 12.250 0.240 47 0.073 74 12.5642

Table 7. Numerical values of the dimensionless product Pnl and the partial contributions P
(s)
nl to

it for the states nl = 01 for various values of s. The Gaussian potential was used.

s P
(0)
01 P

(2)
01 P

(3)
01 P01

0.00 6.250 0 0 6.2500
0.02 6.250 0.002 02 0.000 10 6.2521
0.04 6.250 0.008 09 0.000 83 6.2589
0.06 6.250 0.018 21 0.002 80 6.2710
0.08 6.250 0.032 38 0.006 63 6.2890
0.10 6.250 0.050 59 0.012 95 6.3135
0.12 6.250 0.072 84 0.022 39 6.3452

Table 8. Numerical values of the dimensionless product Pnl and the partial contributions P
(s)
nl to

it for the states nl = 02 for various values of s. The Gaussian potential was used.

s P
(0)
02 P

(2)
02 P

(3)
02 P02

0.00 12.250 0 0 12.2500
0.02 12.250 0.007 78 0.000 46 12.2582
0.04 12.250 0.031 11 0.003 68 12.2848
0.06 12.250 0.069 99 0.012 43 12.3324
0.08 12.250 0.124 43 0.029 45 12.4039
0.10 12.250 0.194 41 0.057 52 12.5019
0.12 12.250 0.279 90 0.099 50 12.6294

We would also like to point out that the Pnl values obtained with the Gaussian potential
are quite close to the corresponding ones resulted with the PT potential. However due to
the difference in their shape, small but marked differences are observed. We may recall [4]
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Figure 1. The dimensionless product Pnl = 〈r2〉nl〈p2〉nl/h̄
2 as a function of s

(s = [h̄2/(2µV0R
2)]1/2) for the PT potential for the 00 state (n = 0, l = 0) with the HVT

technique (solid line) and with the semianalytic formula of the appendix (dashed line).
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Figure 2. The dimensionless product Pnl = 〈r2〉nl〈p2〉nl/h̄
2 as a function of s

(s = [h̄2/(2µV0R
2)]1/2) for the PT potential for the 10 state (n = 1, l = 0) with the HVT

technique (solid line) and with the semianalytic formula of the appendix (dashed line).

that the numbers dk which are determined by the potential shape are for the PT potential
d0 = 1, d1 = −1, d2 = 2/3, d3 = −17/45, d4 = 62/315, while those for the Gaussian
potential are given by dk = (−1)k

(k)! . Due to the difference in these values, the values of the
dimensionless product Pnl differ a little. Our numerical results show that the values of Pnl

obtained with the Gaussian potential are a little larger than the corresponding ones obtained
with the PT potential.

In figures 1 and 2, the variation of Pnl with s is shown for the states n = 0, l = 0 and
n = 1, l = 0 using the PT potential. In the same figures, the corresponding results obtained
with the semi-analytic expression (44) of the appendix are also shown (dashed lines). It is
seen that there is a fairly good agreement with the HVT results, as long as s is sufficiently
small. We should also point out that in those cases of small s the agreement is also satisfactory
with the corresponding results for the Pnl values obtained with the more laborious numerical
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solution of the Schrödinger eigenvalue problem and the further numerical integration of the
two integrals involved.

It is clear, since s = (
h̄2

2µV0R2

)1/2
, that small values of s imply deep (large V0) and wide

(large R) potential wells. An interesting physical system corresponding to the situation of a
wide well, (for which certain energy eigenvalues are known experimentally) is a rather heavy
�-hypernucleus. The self-consistent field felt by the �-particle in the hypernucleus is very
complicated, but suitable single-particle potentials can be used often very satisfactorily. Two-
parameter central potentials of the type used here may be considered as possible candidates
for a rough representation of a more realistic single-particle potential. These potentials are
in their turn, more realistic than the well-known harmonic oscillator potential, which because
of its considerable analytic advantages has been very popular in nuclear physics problems
for purposes of rough estimates. The use of the HVT technique has shown that potentials
of the class considered can be useful in a number of cases for these purposes [21, 22]. To
guarantee rather small values of s one should consider, however, hypernuclei with fairly large
mass numbers.

In conclusion, this paper shows that the HVT technique provides for sufficiently small
values of s, a rather simple and handy way to estimate the dimensionless product Pnl for any
(deeply) bound eigenstate of a wide class of central single particle Hamiltonians, treating them
in a unified way.
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Appendix. The semi-analytic expression for Pn0 in the case of the (reduced)
Poeschl–Teller potential

The (reduced) PT central potential has the advantage that its energy-eigenvalues and
eigenfunctions can be given analytically not only for the ground-single particle state but
also for any bound single particle s-state [22–24, 4].

The energy eigenvalues En0 are given in terms of the dimensionless parameter s by the
very simple expression

En0 = −V0
{
s
[
2n + 3

2 −
√

s−2 + 4−1
]}2

n = 0, 1, 2, . . . . (36)

Application of the Hellmann–Feynman theorem leads to an analytic expression of the
expectation value of the kinetic energy operator 〈T̂ 〉n0 from which the expectation value of the
square of the momentum follows. The result is

〈p2〉n0 = h̄2

R2
An0(s) (37)

where

An0(s) = {−(
2n + 3

2

)
s−2(s−2 + 4−1)−1/2 + s−2 − [(

2n + 3
2

) − (s−2 + 4−1)−1/2
]2}

. (38)

The corresponding normalized eigenfunctions are given in terms of the hypergeometric
function 2F1, by the formula
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�n0(r) =
[

23 	(n + 3/2)	(2λ − n + 1/2)(2λ − 2n − 1)

R	(n + 1)	(2λ − n)

]1/2 (
ch

r

R

)−2λ

sh
r

R

× 2F1

(
−n, n − 2λ + 1; 3

2
;−sh2 r

R

)
(39)

where λ = 1
2

[√
s−2 + 4−1 − 1

2

]
, and hence s2 = 1

2λ(2λ+1)
.

For the mean square radius of the particle-orbit we have

〈r2〉n0 = C2
n0(s)

R

∫ ∞

0
r2 ch−4λ r

R
sh2 r

R
2F1

2

(
−n, n − 2λ + 1; 3

2
;−sh2 r

R

)
dr (40)

where

C2
n0(s) =

[
23	(n + 3/2)	(2λ − n + 1/2)(2λ − 2n − 1)

π	(n + 1)	(2λ − n)

]
. (41)

By making the transformation x = r/R we get for 〈r2〉n0

〈r2〉n0 = C2
n0(s)R

2In0(s) (42)

where the one-dimensional integral In0(s) is given by

In0(s) =
∫ ∞

0
x2 ch−4λx sh2x2F

2
1

(
−n, n − 2λ + 1; 3

2
;−sh2x

)
dx. (43)

Multiplying (37) with (42) we obtain the final result for the dimensionless product Pn0 in
the case of the PT potential

P PT
n0 (s) ≡ 〈r2〉n0〈p2〉n0/h̄

2 = C2
n0(s)In0(s)An0(s). (44)

This is a semi-analytic expression for Pn0(s), since the integral In0(s) has to be computed
numerically by using an appropriate subroutine.

The above expression (44) was used for the semi-analytic results shown in figures 1
and 2.
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